Exponential integrals, Lefschetz thimbles and linear resurgence

Maxim Kontsevich

I.H.E.S.

30 June 2020

Given:

- ▶ X complex manifold, dim_ℂ X = N
- f holomorphic function on X (a map $f: X \to \mathbb{C}$)
- μ holomorphic *N*-form on *X*, in local coordinates $\mu = \mu(x) d^N x$
- $lacktriangleq \gamma$ oriented noncompact N-cycle such that $\operatorname{Re} f_{|\gamma} o +\infty$ at "infinity" of γ

 \leadsto integral depending on small parameter $0 < \hbar \ll 1$ (assume absolute convergence):

$$I(\hbar) := \int_{\gamma} e^{-f/\hbar} \boldsymbol{\mu} = \int_{\gamma} e^{-f(x)/\hbar} \mu(x) d^{N}x$$

Want to study its asymptotic expansion at $\hbar \to +0$. **Example**: $\int_{\mathbb{R}} e^{-\frac{1}{\hbar}(x^4+x)} dx$.

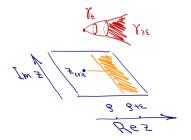
Define $ho=
ho_{\it crit}\in\mathbb{R}$ as the maximal real number such that γ can be pushed to the subset

$$\{x \in X | \operatorname{Re} f(x) \ge \rho_{crit}\}$$

Then ρ_{crit} is a critical value of Re f, hence equals to the real part of a complex critical value z_{crit} of f (or maybe several critical values $z_{crit,i}$).

Simplifying assumption: only one complex critical value, \leadsto cycle γ can be pushed to

$$\left(\bigcup_{t\in[0,\epsilon]}\gamma_t\right)\cup\gamma_{\geq\epsilon},\quad \gamma_t\in H_{N-1}(f^{-1}(z_{crit}+t),\mathbb{Z}),\quad \gamma_{\geq\epsilon}\subset\{x\in X|\operatorname{Re} f(x)\geq\rho_{crit}+\epsilon\}$$



$$\lim_{t\to+0} \gamma_t = 0 \in H_{N-1}(f^{-1}(z_{crit}), \mathbb{Z})$$
 (vanishing cycle)

Contribution of $\gamma_{\geq \epsilon}$ is exponentially supressed.

Denote by vol(t) the volume of (N-1)-dimensional cycle γ_t with respect to (N-1)- form $\frac{\mu}{dt}$ on $f^{-1}(z_{crit}+t)$, for $0 < t \le \epsilon$. Then we have

$$\int_{\gamma}e^{-f/\hbar}oldsymbol{\mu}=e^{-z_{crit}/\hbar}\left(\int_{0}^{\epsilon}e^{-t/\hbar}vol(t)dt+O(e^{-\epsilon/\hbar})
ight)$$

Theorem (follows from resolution of singularities): Function vol(t) for $0 < t \ll \epsilon$ is the sum of an absolutely convergent series:

$$vol(t) = \sum_{\lambda \in rac{1}{M}\{1,2,\dots\}, 0 \leq k \leq k_{max}} a_{\lambda,k} \ t^{\lambda-1} \log(t)^k \quad ext{ for some } M \geq 1, \ k_{max} \geq 0$$

Corollary: Exponential integral has an asymptotic expansion at $\hbar \to +0$

$$\int_{\gamma} e^{-f/\hbar} oldsymbol{\mu} \sim e^{-z_{crit}/\hbar} \cdot \sum_{\substack{\lambda \in rac{1}{M}\{1,2,...\} \ 0 \leq k \leq k_{max}}} c_{\lambda,k} \, \hbar^{\lambda} \log(\hbar)^{k}$$

Simplifying assumption: $k_{max}=0$. Then $vol(t)=\sum_{\lambda>0}a_{\lambda}t^{\lambda-1}$ and

$$e^{z_{crit}/\hbar}\int_{\gamma}e^{-f/\hbar}m{\mu}\sim\sum_{\lambda>0}c_{\lambda}\,\hbar^{\lambda} \quad ext{ where } c_{\lambda}=\Gamma(\lambda)\,a_{\lambda} ext{ because } \int_{0}^{\infty}e^{-t/\hbar}\,t^{\lambda-1}dt=\Gamma(\lambda)\,\hbar^{\lambda}$$

Asymptotic series $\sum_{\lambda} c_{\lambda} h^{\lambda}$ is factorially divergent. How do we get a numerical value?

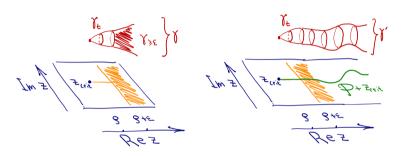
Borel summation method: Apply Borel transform

$$\sum_{\lambda} c_{\lambda} \, \hbar^{\lambda} \leadsto \sum_{\lambda} \frac{c_{\lambda}}{\Gamma(\lambda)} t^{\lambda-1} \quad \left(\text{and get } \sum_{\lambda} a_{\lambda} \, t^{\lambda-1} = \textit{vol}(t) \right)$$

Assume that the Borel transform extends analytically along a path \mathcal{P} in \mathbb{C} starting at 0 and going to $+\infty$ (which is in our case any path avoiding critical values of $f-z_{crit}$).

Regularized value of
$$\sum_{\lambda} c_{\lambda} \, \hbar^{\lambda} := \int_{\mathcal{P}} e^{-t/\hbar}$$
 Borel transform $(t)dt$

Choice of a path $\mathcal{P} \leadsto$ a cycle of integration γ' obtained as the union of (N-1)-dimensional cycles $\gamma_t \in H_{N-1}(f^{-1}(z_{crit}+t),\mathbb{Z})$ for $t \in \mathcal{P}$.



The difference $\gamma-\gamma'$ is a cycle of integration supported *strictly on the right*, in the subset $\{x\in X|\operatorname{Re} f(x)>\rho_{crit}+\epsilon\}\subset X$. In a lucky case, when, e.g. there is no critical values of f with real part $>\rho_{crit}$, we can push $\gamma-\gamma'$ further to $+\infty$ and show that the integral over $\gamma-\gamma'$ vanishes, i.e. Borel summation gives exactly the value of $e^{z_{crit}/\hbar}\int_{\gamma}e^{-f/\hbar}\mu$. Otherwise, we get a correction with a strictly faster exponential decay, which can be analyzed in a similar way.

2. Lefschetz thimbles, Stokes rays and Riemann-Hilbert problem

Simplifying assumption: all critical points $x_{\alpha} \in X$ are isolated and non-degenerate (i.e. Morse in the holomorphic sense: $f''_{|x_{\alpha}}$ is a non-degenerate \mathbb{C} -quadratic form on $T_{x_{\alpha}}X$), and all critical values $z_{\alpha} = f(x_{\alpha})$ are pairwise distinct. There is a unique (up to \pm) vanishing cycle near each x_{α} , diffeomorphic to S^{N-1} .

Definition: for each Morse critical point x_{α} and a *generic* direction $\theta \in \mathbb{R}/2\pi\mathbb{Z}$, the **Lefschetz thimble** $th_{\alpha,\theta} \simeq \mathbb{R}^N \subset X$ is the continuation of the vanishing cycle near x_{α} along the path $z_{\alpha} + e^{i\theta}\mathbb{R}_{>0} \subset \mathbb{C}$. Ill-defined only if $\theta = \arg(z_{\beta} - z_{\alpha})$ for some $z_{\beta} \neq z_{\alpha}$.

For a *complex* value $h \in \mathbb{C} - 0$ and a critical point x_{α} , the **normalized integral** is

$$I_{lpha}^{norm}(\hbar) := \frac{1}{(2\pi\hbar)^{N/2}} e^{z_{lpha}/\hbar} \int_{th_{lpha, arg} \hbar} e^{-f/\hbar} \mu$$

By general theory, it has a divergent asymptotic expansion $\sim \sum_{n\geq 0} c_n^{(\alpha)} \hbar^n$. Coefficients $c_0^{(\alpha)}, c_1^{(\alpha)}, \ldots$ do not depend on the direction $\theta = \arg(\hbar)$.

2. Lefschetz thimbles, Stokes rays and Riemann-Hilbert problem

Function I_{α}^{norm} is defined and analytic outside Stokes rays $\{\hbar \mid \arg \hbar = \arg(z_{\beta} - z_{\alpha})\}$ in the complex plane \mathbb{C}_{\hbar} , extends analytically a little bit across the cuts. Let $\theta \in \mathbb{R}/2\pi\mathbb{Z}$ be such that on an oriented line in \mathbb{C} with slope θ lie $k \geq 2$ distinct critical values $z_{\alpha_1}, \ldots, z_{\alpha_k}$ in the increasing order. For values $\theta_- < \theta < \theta_+$ close to θ the normalized integrals are well-defined.

Jump formula :
$$\begin{pmatrix} I_{\alpha_{1},+}^{norm}(\hbar) \\ \vdots \\ I_{\alpha_{k},+}^{norm}(\hbar) \end{pmatrix} = S_{\theta} \cdot \begin{pmatrix} I_{\alpha_{1},-}^{norm}(\hbar) \\ \vdots \\ I_{\alpha_{k},-}^{norm}(\hbar) \end{pmatrix}$$

where $S_{\theta}=(S_{\alpha,\beta})_{\alpha,\beta\in\{\alpha_1,\dots,\alpha_k\}}$ is an upper-triangular matrix with $S_{\alpha,\alpha}=1$ and exponentially small off-diagonal terms $S_{\alpha,\beta}=S_{\alpha,\beta}(\hbar):=n_{\alpha,\beta}\,e^{-(z_{\beta}-z_{\alpha})/\hbar}$ where $n_{\alpha,\beta}$ are integers (Stokes indices) given by intersection numbers

$$n_{\alpha,\beta} := th_{\alpha,\theta_+} \cdot th_{\beta,\theta_-+\pi} \in \mathbb{Z}$$

2. Lefschetz thimbles, Stokes rays and Riemann-Hilbert problem

Data $(z_{\alpha} \in \mathbb{C}), (n_{\alpha,\beta} \in \mathbb{Z})$ defines a modification of the trivial vector bundle with fiber $\mathbb{C}^{\{z_{\alpha}\}}$ over complex plane \mathbb{C}_{\hbar} , by gluing via linear¹ automorphisms $S_{\theta}(\hbar)$ along Stokes rays $e^{i\theta}\mathbb{R}_{\geq 0}$. Let solve somehow (there are many ways) *Riemann-Hilbert problem*, i.e. find a holomorphic trivialization of the glued bundle. Equivalently, find matrix-valued function G on \mathbb{C}_{\hbar} – {Stokes rays} satisfying jump equations on cuts

$$G_{e^{i heta},+}(\hbar) = S_{ heta}(\hbar) \cdot G_{e^{i heta},-}(\hbar), \quad ext{ with boundary condition: } \lim_{\hbar o 0} G(\hbar) = Id_{\mathbb{C}^{\{z_{lpha}\}}}$$

Then vector-valued function $\vec{J}(\hbar) := G(\hbar)^{-1} \cdot \vec{I}^{norm}(\hbar)$ has trivial jumps, hence is holomorphic in \hbar . The convergent Taylor expansion of \vec{J} is the product of the divergent asymptotic expansion of G at $\hbar=0$ (does not depend on the choice of sector), and of the divergent asymptotic expansion of $\vec{I}^{norm}(\hbar) = (I_{\alpha}^{norm}(\hbar))_{all\{z_{\alpha}\}}$.

 $|\vec{I}^{norm} = G \cdot J|$ - an alternative to Borel summation: divergent series \rightsquigarrow actual values.

¹This is the origin of "linear resurgence" in the title. WKB problems lead to *non-linear* glueings.

3. Example: classical special functions

• (Airy function): $X = \mathbb{C}$, $f = \frac{x^3}{3} - x$, $\mu = dx$. Critical points: $x = \pm 1$, critical values: $z_1 = -2/3$, $z_2 = +2/3$. Stokes indices: $n_{12} = +1$, $n_{21} = -1$

critical values:
$$z_1 = -2/3$$
, $z_2 = +2/3$. Stokes indices: $n_{12} = +1$, $n_{21} = -1$.

where $\operatorname{Ai}(y) := 1/(2\pi) \int_{\mathbb{R}} \cos(t^3/3 + yt) dt$ is the classical Airy function.

Jumps:
$$I_{1}^{norm}(\hbar + i0) - I_{1}^{norm}(\hbar - i0) = + \frac{1}{1} \cdot e^{-\frac{4}{3\hbar}} I_{2}^{norm}(\hbar), \quad \hbar \in \mathbb{R}_{\geq 0}$$
$$I_{2}^{norm}(\hbar - i0) - I_{2}^{norm}(\hbar + i0) = - \frac{1}{1} \cdot e^{+\frac{4}{3\hbar}} I_{1}^{norm}(\hbar), \quad \hbar \in \mathbb{R}_{\leq 0}$$

modified, of second kind (Bessel function):
$$X = \mathbb{C}^{\times}$$
, $f = x + \frac{1}{x}$, $\mu = \frac{dx}{x}$. Critical points: $x = \pm 1$, critical values: $z_1 = -2$, $z_2 = +2$. Stokes indices: $n_{12} = +2$, $n_{21} = -2$.

critical values: $z_1 = -2, z_2 = +2$. Stokes indices: $n_{12} = +2, n_{21} = -2$.

Bessel integral: $\int_0^\infty e^{-\frac{1}{\hbar}(x+\frac{1}{x})} \frac{dx}{x} = 2K_0\left(\frac{2}{\hbar}\right) \sim \sqrt{\pi\hbar} \, e^{-\frac{2}{\hbar}} \sum_{n \geq 0} \frac{(-1)^n((2n-1)!!)^2}{n! \, 16^n} \hbar^n$

4. Example: Gamma function, infinitely many critical values

● Z-1

• Z₀

• *Z*₁

Consider algebraic variety \mathbb{C}^{\times} with (closed) 1-form $\eta=(1-1/x)dx$ which is *not* a differential of a function, as it has a non-trivial period $\oint \eta=-2\pi i$. In order to represent η as differential of a function, we should go to the universal \mathbb{Z} -cover $\mathbb{C} \xrightarrow{\exp} \mathbb{C}^{\times}$. Denote by t the coordinate on the cover, so $x=e^t$. Then we have

(pullback of
$$\eta$$
) = $dx - \frac{dx}{x} = dx - dt = d(e^t - t)$, $f := e^t - t$

Function f = f(t) has infinitely many critical points $t_k = 2\pi i k$, $k \in \mathbb{Z}$. \rightsquigarrow critical values: $z_k = 1 - 2\pi i k$. The normalized integral for $\text{Re } \hbar > 0$, any $k \in \mathbb{Z}$ is

$$I_k^{norm}(\hbar) \stackrel{k=0}{:=} \frac{e^{1/\hbar}}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{(-e^t+t)/\hbar} dt = \frac{e^{1/\hbar}}{\sqrt{2\pi\hbar}} \int_0^{\infty} e^{-x/\hbar} x^{1/\hbar} \frac{dx}{x} = \frac{e^{1/\hbar} \hbar^{1/\hbar} \Gamma(1/\hbar)}{\sqrt{2\pi\hbar}}$$

For Re $\hbar < 0$ one has $I^{norm}_{\bullet}(\hbar) = 1/I^{norm}_{\bullet}(-\hbar)$ (does not depend on $\bullet = k \in \mathbb{Z}$) Asymptotic expansion: $I^{norm}_{\bullet}(\hbar) \stackrel{\hbar \to +0}{\sim} 1 + \frac{1}{12}\hbar + \frac{1}{288}\hbar^2 - \frac{139}{51840}\hbar^3 + \dots$ (Stirling formula).

4. Example: Gamma function, infinitely many critical values

We get basically *two* functions:
$$\begin{cases} I_R(\hbar) := \frac{e^{1/\hbar}\hbar^{1/\hbar}\Gamma(1/\hbar)}{\sqrt{2\pi\hbar}} & \text{for } \mathrm{Re}\,\hbar > 0 \\ I_L(\hbar) := 1/I_R(-\hbar) & \text{for } \mathrm{Re}\,\hbar < 0 \end{cases}$$

$$\mathbf{Jump formulas:} \qquad \begin{matrix} I_L(\hbar) = I_R(\hbar) \cdot (1 - \exp(-\frac{2\pi i}{\hbar})) & \text{for } \hbar \in i \, \mathbb{R}_{>0} \\ I_R(\hbar) = I_L(\hbar) \cdot (1 - \exp(+\frac{2\pi i}{\hbar}))^{-1} & \text{for } \hbar \in i \, \mathbb{R}_{<0} \end{cases}$$

$$ightarrow ext{Stokes indices } n_{kk'} = egin{cases} -1 & k' = k-1 \ +1 & k' > k \ 0 & ext{otherwise} \end{cases} orall k, k' \in \mathbb{Z}$$

Puzzle: for quantized values of $\hbar=\pm 1,\pm \frac{1}{2},\pm \frac{1}{3},\ldots$ function $e^{-f/\hbar}$ descends to \mathbb{C}^{\times} -valued function on \mathbb{Z} -quotient \mathbb{C}^{\times} with coordinate $x=e^t\neq 0$. Hence for such \hbar the contour integral $\oint e^{-f/\hbar} dx/x$ is well-defined. How it is related to the integrals over Lefschetz thimbles? A similar problem in quantum Chern-Simons theory, see later.

5. Example: Infinite-dimensional integral (heat kernel)

Let (M,g) be a real-analytic Riemannian manifold which admits a "reasonable" complexification $(M_{\mathbb{C}},g_{\mathbb{C}})$. Fix two points $p_0,p_1\in M$, and consider the path integral

$$I(\hbar) := \int\limits_{\substack{Paths\ \phi: [0,1] o M \ \phi(0) = p_0, \phi(1) = p_1}} e^{-rac{S(\phi)}{\hbar}} \mathcal{D} \phi, \qquad ext{where} \ S(\phi) = rac{1}{2} \int_0^1 \left| rac{d\phi(t)}{dt}
ight|_g^2 dt$$

The integration domain is as a totally real infinite-dimensional contour γ in X:= infinite-dimensional *complex* manifold of paths connecting p_0 and p_1 in $M_{\mathbb C}$. Dirichlet functional $\phi \in \gamma \mapsto S(\phi) \in \mathbb R$ extends to a *holomorphic* function $f: X \to \mathbb C$, the fictitious "Lebesgue measure" $\mathcal D\phi$ "extends" to a holomorphic volume form μ on X.

Mathematically rigorous interpretation (Feynman-Kac formula):

$$I(\hbar)=$$
 heat kernel $K(p_0,p_1;t)=\langle p_0|e^{-rac{1}{2}\Delta t}|p_1
angle$

where time t > 0 (for the Brownian motion) is identified with the *Planck constant* \hbar .

5. Example: Infinite-dimensional integral (heat kernel)

Short-time asymptotic expansion of the heat kernel:

$$K(p_0, p_1; t) \stackrel{t \to +0}{\sim} (2\pi t)^{-\dim M/2} e^{-\frac{\operatorname{dist}(p_0, p_1)^2}{2t}} \sum_{n \geq 0} c_n t^n$$

Conjecture: sequence c_n has factorial growth, is resurgent, and the Borel transform has singularities at numbers $\ell_{\alpha}^2/2 \in \mathbb{C}$ where ℓ_{α} are lengths of *complex* geodesics connecting p_0, p_1 (formal solutions of Euler-Lagrange equation for $\phi : [0,1] \to (M_{\mathbb{C}}, g_{\mathbb{C}})$).

compact surfaces with hyperbolic metric,...

14/20

3 different series of examples, hypothetically give the same class of data $(z_{\alpha}), (n_{\alpha,\beta})$:

- $lacksymbol{ iny} X_3 = \mathbb{Z}$ -cover of $X_3' := \Big\{ C^{\infty}$ -connections on G-bundle $egin{pmatrix} \mathsf{P} \ \downarrow \ M \end{bmatrix}$ /gauge equivalences, where M is an oriented manifold of dimension 3, G is a complex semisimple group.
- ▶ $X_1 = \mathbb{Z}$ -cover of $X_1' := \left\{ C^{\infty}$ -paths $\phi : [0,1] \to (\mathbb{C}^{\times})^{2n} \mid \phi(0) \in L_0, \phi(1) \in L_1 \right\}$ where L_0, L_1 are algebraic K_2 -lagrangian submanifolds of $(\mathbb{C}^{\times})^{2n}$: $\sum_{i=1}^n [z_i]_{|L_{\epsilon}} \wedge [z_{n+i}]_{|L_{\epsilon}} = 0 \in K_2(L_{\epsilon}), \quad \epsilon = 0, 1 \quad (K_2$ -condition will explain later)
- ▶ $X_0 = \mathbb{Z}$ -cover of $X_0' := a \mathbb{Z}^m$ -cover of $(\mathbb{C}^\times)^m \bigcup_{\vec{v} \in B} \{\vec{x} \in (\mathbb{C}^\times)^m \mid \vec{x}^{\vec{v}} = 1\}$ where $B \subset \mathbb{Z}^m 0$ is a finite subset, $\vec{x}^{\vec{v}} := \prod_{i=1}^m x_i^{\nu_i}$ for $\vec{x} = (x_1, \dots, x_m) \in (\mathbb{C}^\times)^m$ and $\vec{v} = (\nu_1, \dots, \nu_m) \in \mathbb{Z}^m$.

Case of connections on a 3-dimensional manifold M:

On $X_3 = \{Connections\}$ functional f is the Chern-Simons action:

for a $SL(N,\mathbb{C})$ -connection abla=d+A in the trivialized bundle

$$f(
abla) := \int_{\mathsf{M}} \mathsf{Tr}\,\Big(rac{AdA}{2} + rac{A^3}{3}\Big), \qquad A \in \mathit{Mat}(\mathsf{N} imes \mathsf{N}, \Omega^1(\mathsf{M})), \, \mathsf{Tr}(A) = 0$$

Ambiguity under gauge transformations: $f(g^{-1}\nabla g) - f(\nabla) \in (2\pi i)^2 \mathbb{Z}$.

For special "quantized" values of \hbar :

$$\hbar = \frac{2\pi i}{k}, \ k = \pm 1, \pm 2, \dots$$

 \leadsto well-defined function $\exp(-f/\hbar)$ on \mathbb{Z} -quotient X_3' . Canonical "compact" cycle of integration = {unitary connections} \leadsto quantum Chern-Simons theory at level k (for k>0).

Case of paths connecting K_2 -lagrangian subvarieties $L_0, L_1 \in (\mathbb{C}^{\times})^{2n}$:

Examples of K_2 -lagrangian subvarieties in $(\mathbb{C}^{\times})^{2n}$ endowed with the standard symplectic form $\omega = \sum_{i=1}^n d \log(z_i) \wedge d \log(z_{n+i})$:

$$L = \{(z_1, \dots, z_{2n}) \in (\mathbb{C}^{\times})^{2n} \mid \forall i = 1, \dots, n : z_{n+i} = 1 \text{ or } (1 - z_i)\}$$

and its images under $Sp(2n, \mathbb{Z})$ -action.

For any K_2 -lagrangian L and any $\delta \in H_2((\mathbb{C}^\times)^{2n}, L; \mathbb{Z})$ one has $\int_\delta \omega \in (2\pi i)^2 \mathbb{Z}$.

Functional f on {paths connecting two K_2 -lagrangian L_0, L_1 } is defined up to $(2\pi i)^2\mathbb{Z}$:

$$f(\phi) - f(\phi') = \int_{4-gon} \omega \qquad \qquad \phi([0,1]) \qquad \qquad \downarrow_{4-gon} L_1$$

Case of sums of dilogarithms:

DATA:

- ▶ a finite subset $B \subset \mathbb{Z}^m 0$
- ▶ a collection of integer non-zero weights $w_{\vec{v}} \in \mathbb{Z} 0$ for all $\vec{v} \in B$
- ▶ an even quadratic form $b = (b_{ii})_{1 \le i, i \le m},$ $b_{ii} = b_{ii} \in \mathbb{Z}, b_{ii} \in 2\mathbb{Z}$

→ multivalued function

$$f := \sum_{\vec{v} \in B} w_{\vec{v}} \operatorname{Li}_2(\vec{x}^{\vec{v}}) + \frac{1}{2} \sum_{i,j} b_{ij} \log(x_i) \log(x_j)$$
 recall: $\operatorname{Li}_2(x) := \sum_{k \ge 1} \frac{x^k}{k^2}$

Its differential $\eta := df$ is well-defined on $X' := \mathbb{Z}^m$ -cover of $(\mathbb{C}^\times)^m - \cup_{\vec{\nu} \in B} \{\vec{x}^{\vec{\nu}} = 1\}$

$$df = \sum_{i=1}^m \left(-\sum_{ec{
u} \in B}
u_i w_{ec{
u}} \log(1 - ec{x}^{ec{
u}}) + \sum_{j=1}^m b_{ij} \log(z_j) \right) d \log(x_i)$$

Periods of η belong to $(2\pi i)^2 \mathbb{Z}$, function f is well-defined on a \mathbb{Z} -cover X of X'.

In all 3 situations the set of critical values is a *finite* union of arithmetic progressions in \mathbb{C} each with the step $(2\pi i)^2 = -39.4784...$

The reason is that in each of 3 situations, critical points (up to \mathbb{Z} -action) are solutions of a system of algebraic equations, with coefficients in \mathbb{Q} , of expected dimension 0.

- ▶ case **3**: representations $\pi_1(M) \to G$ (the group can be defined over \mathbb{Q})
- ▶ case **1**: intersection $L \cap L'$ of two algebraic subvarieties defined over \mathbb{Q}
- ▶ case **0**: solutions of a system of *algebraic* equations $\exp(x_i \partial_{x_i} f) = 1, i = 1, ..., m$

Same critical values, - image of Beilinson-Borel regulator $K_3^{ind}(\overline{\mathbb{Q}}) \to \mathbb{C}/(2\pi i \mathbb{Z})^2$.

Conjecture: one can identify situations **3,1,0** not only matching the critical values $z_{(\underline{\alpha},k)}$, but also the *Stokes indices* $n_{(\underline{\alpha},k),(\underline{\alpha}',k')} =: n_{\underline{\alpha},\underline{\alpha}';k'-k}$.

Analogy: Stokes indices of an ∞ -dim. path integral (heat kernel) = those of a finite-dim. exponential integral.

One can effectively study topology in the case $\mathbf{0}$, an example:

$$f = \operatorname{Li}_2(x) + \log(x)^2 \rightsquigarrow X_0' = \{(x, t) \in \mathbb{C}^2 | \frac{x^2}{1 - x} = e^t\} \Leftrightarrow x = \underbrace{\frac{-e^t \pm e^{t/2} \sqrt{e^t + 4}}{2}}_{\infty \text{ genus hyperelliptic curve}}$$

Map $\exp(\frac{f}{2\pi i}): X_0' \to \mathbb{C}^{\times}$ is ramified at a finite set of points in \mathbb{C}^{\times} , monodromy is accessible.

The angle-ordered product $\prod_{\theta \in \mathcal{S}} \mathsf{of} \infty$ many Stokes matrices S_{θ} can be identified with

the "monodromy" of a q-difference equation where

$$q=e^{rac{(2\pi i)^2}{\hbar}}$$
 replace by one c in RH problem